

A proud member of

Enhancing beam performance for life sciences instrumentation

Micro-optics summit and expo

Alex Griffiths, Callum Wreford, Natalia Trela-McDonald

PowerPhotonic Ltd. Dalgety Bay, UK

Single- and Multi-Mode Beamshapers

3D Beamshapers

Variable Beamshapers

Beam Shaping – enhancing laser applications

- Life sciences instrumentation
- Laser Projection
- Directed Energy systems
- Macro materials processing to >15kW
- Micro materials processing CW-ns-ps-fs

Collimation error correction

Aberration correction

Beam Correction – delivering performance edge

- Correcting & shaping diode laser array for diode pumping
- Aberration correction in life sciences instrumentation

Freeform design turning ideas to products using direct-write fabrication

Freeform = design freedom

- No symmetry constraints
- Realise complex optical designs
- Wide range of functionality

Direct-write = flexibility

- No masks, no moulds
- Trial, iterate and optimise design
- Prototype to volume in one process

Laser-polished fused silica optics:

- Low roughness ,~1nm
- High transmission efficiency, >99%
- High power handling

Origination for Phabulous pilot line

A proud member of Phabulopus

PowerPhotonic master

Stitched array of replicated masters performed by Joanneum

Enhancing beam performance for life sciences instrumentation (and other laser systems)

Performance of real life laser instrumentation

What's needed?

To achieve:

- High image quality
- Performance consistency
- System efficiency

We require:

- Consistent laser beam
- High beam quality
 - Pointing
 - Divergence
 - Intensity profile
 - Wavefront

Performance of real life laser instrumentation

What's in the way?

- Inconsistent laser output
- Optical mis-alignment
- Aberrations
- Distortions caused by operating conditions
- Coalignment errors between multiple laser sources

Aberrations and impact on your beam

- Arbitrary wavefront distortions can be corrected with our ultra-smooth passive optical correctors.
- If we can measure we can correct it!

Measuring wavefront errors

Optical simulation

Knowing your optical path and the details of optical components, you can simulate the wavefront distortion.

Wavefront measurement
Using a wavefront sensor, you can measure the wavefront and calculate the delta from the target.

Near-field or far-field measurement
Using far-field and near-field measurement, you can assess defocus and pointing errors.

Now you know your wavefront error

Monolithic beam correctors

Array of corrective elements

Let's look at some examples

Application example: coherent beam combiner

Pointing errors occur in hexagonal fiber laser after collimation.

A single beam corrector plate produces an array of parallel beams with flat top intensity profile.

A second corrector plate creates flat wavefront.

Application example: coherent beam combiner

Far field pattern before correction

Far field pattern <u>after</u> correction

Corrector array

Micro-optics summit and expo

Application example: Low SWaP QCW Stack

Initial diode laser array quality (extreme example)

- Map of the measured wavefront errors
- Automated design and fabrication of correction plate
- Improved beam quality

LightForgeTM

Rapid Prototyping

- Upload design via web portal
- 2 week turn around for uncoated optic

Design Freedom

- 15x15mm CA
- 65um max Sagitta
- 45deg max slope

Cost Effective

- No mask
- No set up fee

Easy Installation

25.4mm square or round substrate

Thank you for your attention

Please get in touch to enhance beam performance in your laser system

PowerPhotonic Ltd. 5A St David's Drive Dalgety Bay KY11 9PF United Kingdom +44 1383 825 910 sales@powerphotonic.com

