

Roll-2-Roll imprinting solutions in lighting

Recent progress in UV-Nanoimprinting of Micro Optics on Foil

Paul Hartmann

JOANNEUM RESEARCH
MATERIALS

Institute for Sensors, Photonics and Manufacturing Technologies

MATERIALS Institute for Sensors, Photonics and Manufacturing Technologies

- Director:
 - Paul Hartmann
- 5 Research Groups100 Employees
- 2 Locations in Styria
 - Weiz
 - Niklasdorf
- 1 Location in Burgenland
 - Pinkafeld

Hybrid Electronics and Patterning Barbara Stadlober

Light and Optical Technologies
Christian Sommer

Laser and Plasma
Processing
Wolfgang Waldhauser

Sensors and Functional Printing

Jan Hesse

Smart Connected Lighting

Andreas Weiss

Roll-2-Roll UV-NIL Pilot Line an optimized value chain for micro-optics

MATERIAL

e.g. Poly-Urethane-Acrylates

SIMULATION & DESIGN

e.g. COMSOL, Ray Tracing

MASTER

e.g. Maskless Laser Lithography

STAMP / SHIM

Step & Repeat UV-NIL

PRODUCTION

R2R-UV-NIL

MICRO-OPTICS IS...

UPSCALING

Application examples of nano and micro imprinting Structures range from 100nm to 200µm

JOANNEUM RESEARCH MATERIALS

Mastering: Grey Scale Lithography

Main features (Status 2024)

Structuring on planar and curved substrates

Min. feature size(XY): 200 nm

Max. structure height(Z): 60 μm

Aspect ratio: 4:1

Structure type:
1D, 2D, 2.5D and free-form

■ Writing speed (CD = $1 \mu m$) $1 \text{ cm}^2/h$

■ Max. area 16 x 16 cm² (6" x 6")

5

Ongoing Developments in Laser Lithography

Integration of different laser lithography technologies, quality monitoring systems and processes in **one platform** for the development of **structures with high depth** (from **100 nm** to **sub-mm)**, **2D & 3D shapes** on flat surface, combining **parallel & serial patterning** for increased speed and large area (up to 2000cm²)

One-Photon Lithography (1PL)

Two-Photon Lithography (2PL)

Laser Interference Lithography (LIL)

Laser Micromachining at JR MATERIALS

- Modern ultrashort pulse (USP) laser labs
 - Light Conversion Carbide fs-Laser
 - Spectra Physics Spirit fs-Lasers
 - Toptica fs-Laser
 - Edgewave ps-Laser
 - Trumpf ns-Laser

- High-precision xy-stages
- Galvoscanners (synchr.)
 - Working range: max. 210 mm × 210 mm
- Cleanroom Class 6, ISO 14644

Large-area tooling is still a bottleneck

Typical active area from origination (for freeform, nano, high AR, hierarchical...): $10 \times 10 \text{ mm}^2 - 30 \times 30 \text{ mm}^2$

Typical master materials:

resin, Ni, Si, quartz, silicones,...

We need **powerful**, **flexible and highly accurate** upscaling and tooling processes.

Step & Repeat upscaling @JR

Max. substrate area: 700 x 380 mm² (Tool size for R2R@JR: 630 x 270 mm²)

Step & Repeat UV-NIL Upscaling From master to poly-shim

1) Multiple replication of a small master field on a larger area with given distance to each other

Step & Repeat UV-NIL Upscaling From master to poly-shim

1) Multiple replication of a small master field on a larger area with given distance to each other

2) Multiple replication of a small master field with minimum distance to each other or "seamless"

Seamless Step & Repeat Upscaling

Step&Repeat UV imprints on PET foil distance = 1 mm

Seamless Step & Repeat Upscaling

Step&Repeat UV imprints on PET foil distance = 1 mm

Distance and rotation optimization

Roll-to-Roll (R2R) replication

Converting the poly-shim to a durable Ni tool

Use Case 1: Decorative Films

Application:

Freeform micro-facets to realize a sparkling effect for luxury goods

Upscaling target: Seamless Step & Repeat Upscaling for Roll-to-Roll production

Seamless stitching of distributed facets with extremely high edge accuracy, low shrinking and low Abbe number

Resin with high dispersion

"Crystals" with facet designs

Double side imprinted "crystals"

Roll-to-roll (R2R) replication of facets with high accuracy of replication

R2R UV imprint into high index, high dispersion resin

video

v = 1 m/min

16

Roll-to-roll (R2R) replication: finished products

R2R UV imprint into high dispersion resin
+ R2R backside metallized

View: reflection

R2R UV imprint into high dispersion resin View: transmission

JOANNEUM RESEARCH MATERIALS

Use Case 2: Interior Lighting for Trains

Application:

Freeform micro-lenses for a homogeneous large-area direct-lit luminaire as a linear lens array

Upscaling target: Grey Scale Lithography Mastering, Step & Repeat and Roll-to-Plate production

Freeform lenses with highest surface quality and shape fidelity

S&R working stamp

Polymer shim

Roll-to-Plate lens arrays

Roll-to-Roll replcation of FF-Microlenses

Special Thanks to
Ursula Palfinger, Roman Trattnig, Markus Postl, Stephan Ruttloff

Thank you for your attention!

JOANNEUM RESEARCH Forschungsgesellschaft mbH

MATERIALS – Institute for Sensors, Photonics and Manufacturing Technologies

Franz-Pichler-Straße 30 8160 Weiz, Austria

Tel. +43 316 876-3000 materials@joanneum.at

www.joanneum.at/materials

