

Dr. Norbert Danz et al.

Efficient, maskless pattern shaping for lighting and projection

Fraunhofer Institute for Applied Optics and Precision Engineering (IOF), Jena, Germany

Micro-optical systems @ Fraunhofer IOF

Illumination & Shaping

Multi-modal imaging

Miniaturized Microscopy

Integrated Spectroscopy

Light carpet approach

From micro-optical projection to headlamps

Arrayed projector

BMW Welcome Light Carpet (2015)

- Mask layer issues Light losses → efficiency drop
 - Heat dissipation, element aging
 - Additional fabrications steps required

Lucid Air 2022

Hyundai Genesis 2022

General design approach

Irregular Fly's Eye Condenser (iFEC) for maskless shaping

Goal(s)

- Flexibility → Arbitrary field distribution
- Efficiency → Without absorbing masks

Solution: iFEC

- Variable pitch of entrance lenslets
 - Vertices on the channel's axis
 - Aperture might be decenterd
- Constant pitch of projection lenslets
 - Vertices might be decentered

Micro slides → irregular lenslets

Max efficiency ← → max entrance fill factor

General design approach

Arbitrary shaped entrance lenslets

Entrance lenslet as object

Maskless MLA projector

Fill-factor < 55%

Fill-factor ≈ 100%

Application – Symbol ground projection

Car-to-X communication: Turn indicator

Projection on tilted surface (road)

Challenges

- Semi-dynamic projection desired
- Tradeoff between brightness & daylight visibility
 vs. aperture / projector size

Approach

- Size → One common projector for all chevrons
- Exploit 'crosstalk' to generate multiple chevrons

Kundu, Rohan, et al. "Multi-aperture pattern projection using arbitrary shaped microlenslets." Current Developments in Lens Design and Optical Engineering XXIV. Vol. 12666. SPIE, 2023

Application – Symbol ground projection

Symbol ground projection for turn indication

Kundu, Rohan, et al. "Multi-aperture pattern projection using arbitrary shaped microlenslets." Current Developments in Lens Design and Optical Engineering XXIV. Vol. 12666. SPIE, 2023

Application – Symbol ground projection

Symbol ground projection for turn indication

Manufacturing

Mastering and Replication today

Well established by Fraunhofer IOF

MLA Mastering

- Gray scale lithography
- Alternatives: Diamond machining, 2P polym.

H.-Ch. Eckstein et al., "Direct write grayscale lithography for arbitrary shaped micro-optical surfaces", 20th MOC, Fukuoka 2015

Well established by Fraunhofer IOF & SUSS MicroOptics

MLA Replication

- UV molding in mask aligner → Polymer-on-Glass element (POG)
- Alternatives: Injection molding → Monolithic plastic element

P. Dannberg et al., "Wafer-Level hybrid integration Integration of Complex Micro-Optical Modules", Micromachines 2014, No.5, 325-40.

Application – Low beam

Targeted intensity distribution

- **Requirements** Vertical extent: -12° ... 0° / Horizontal extent: -35° ... 35°
 - Peak intensity ca. 30 kcd
 - Sharp and shaped cut-off at the top with smooth decrease downwards

Entrance lenslet

- Entrance lenslet's aperture shape
 is imaged into the far field by exit lenslets
- Shape of the entrance lenslets according to the required cut-off line
- Arrange entrance lenslets in space filling geometry → repetition of the cut-off
- Smooth lower part of the distribution
 - → vary entrance lens heights
 - → vary lateral position

Entrance lenslet

- Entrance lenslet's aperture shape
 is imaged into the far field by exit lenslets
- Shape of the entrance lenslets according to the required cut-off line
- Arrange entrance lenslets in space filling geometry → repetition of the cut-off
- Smooth lower part of the distribution
 - → vary entrance lens heights
 - → vary lateral position

- Entrance lenslet's aperture shape
 is imaged into the far field by exit lenslets
- Shape of the entrance lenslets according to the required cut-off line
- Arrange entrance lenslets in space filling geometry → repetition of the cut-off
- Smooth lower part of the distribution
 - → vary entrance lens heights
 - → vary lateral position

Shaped entrance lenslets

Application – Low beam Demo

Entrance array

Exit array

20 x 35 x 60 mm³ (**H** x W x L).

Applications – Low beam Resulting distribution

Efficient, maskless pattern shaping for lighting and projection Conclusions & Outlook

Maskless irregular fly's eye condenser (iFEC) for generating variable patterns with low loss

- → no lithographic pattering
- → one-step replication of monolithic elements
- → decreased costs (molding, embossing)
- → large area, potentially curved elements ...

Low beam and blinker modules demonstrated

- → improved brightness & extended lifetime expected due to reduced losses
- → ongoing condenser design (sag height jumps) to reduce stray light, to ease replication, and to adapt to non-ideal collimation
- \rightarrow similar patterns for all channels \rightarrow combined distributions
- → add functionalities (3D light-fields, daytime running lights, ...)

μο Designs by

Dr. Peter Schreiber Dmitrii Stefanidi Rohan Kundu Dr. Dirk Michaelis Leo M. Wilhelm

μο Technology by

Dr. Robert Leitel
Dr. Peter Dannberg
Sylke Kleinle
Philipp Schleicher
Anja Schöneberg

Set-up by

Ralf Rosenberger Felix Kraze Thomas Dietrich

Thanks for your kind attention