

EXPANDED BEAM CONNECTOR FOR DATACOM

CSEM AT A GLANCE

We are a public-private, non-profit Swiss technology innovation center

We enable competitiveness by developing and transferring world-class technologies to the industrial sector

1984

630 SPECIALISTS

107.6 M TURNOVER in 2023

177
PATENT
FAMILIES

> 50
VENTURES since 1984

WE ARE 100% INDUSTRY-FOCUSED

Staff with industry experience

Long-term support (80% of staff on permanent contract)

Processes with builtin confidentiality

Industrial equipment (clean rooms, characterization labs)

Proven project management methodology (300 projects/year)

QMS & certifications
(ISO 9001 and 14001,
ISO 13485: Medical devices)

MICRO AND NANO OPTICS MADE AT CSEM

Made on silicon (CMOS etc.), glass, polymer foils, injection molded polymers, metals, ceramics...

BUILDING BLOCK FOR NEW EXPANDED BEAM CONNECTORS FOR FIBER ARRAYS

SPHERICAL MICROLENSES FULL PROCESS FLOW

SPAD LIGHT CONCENTRATION ON MULTI-PROJECT **WAFER/RETICLE** -> **NEED FOR MULTIPLE SAG MLA**

Fig. 1. Micrographs of Piccolo, a 32×32 SPAD array with photosensitive area on the top section, highlighted in red (left) [41,42] – see also Fig. 8 (center); SwissSPAD2 512 × 512, a gated SPAD imager with 4 pixels shown in the inset (center, featuring round SPAD active areas in this case) [45]; Detail of LinoSPAD2, a 512 × 1 linear SPAD array with top alignment cross integrated in the metal stack (right).

Concentration Factor (CF)

MULTIPLE SAG MLA AT WAFER SCALE

Back MLA: \leftarrow Sag = 6 μ m diameter = 16 μ m

Front MLA: \leftarrow Sag = 11 μ m diameter = 34 μ m.

PHABULOUS' CUSTOMER WORD

LightBridge
Integrated Photonics Connectivity

Dr Bruno Sfez
Sfez Technologies Ltd

EXPANDED BEAM CONNECTORS FOR DATACOM

MOLD FABRICATION FOR WAFER-SCALE DATACOM EXPANDED BEAM CONNECTORS

Mold layer

BUILT-IN ANTIREFLECTIVE NANOSTRUCTURES

Process development ongoing. Applicability to selected materials confirmed.

Process step 1

Process being optimized.

SUMMARY AND OUTLOOK

MicroOptics (wafer level optics) has proven very successful in consumer electronics over the last 2 decades.

- Similar market success have been reached in secured documents (banknotes, passports, ID cards...)
- As seen yesterday, Micro Optics is having more and more use cases and deployment in automotive.
- For many other industries, most optical and photonic systems are not yet miniaturized. Our imagination is the limit to deploy micro-optics in new markets combined with photonic integrated circuits, small light sources...

